Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 257: 106434, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870176

RESUMO

Titanium dioxide nanoparticles-multiwalled carbon nanotubes (TiO2-MWCNT) nanohydrid has an enhanced photocatalytic activity across the visible light with promising applications in environmental remediation, solar energy devices and antimicrobial technologies. However, it is necessary to evaluate the toxicological effects of TiO2-MWCNT towards safe and sustainable development of nanohybrids. In this work, we studied the cytotoxicity, protein corona formation and cellular internalisation of TiO2-MWCNT on fibroblasts derived from gonadal rainbow trout tissue (RTG-2) for the first time. This nanohydrid did not show any toxicity effect on RTG-2 cells up to 100 mg L-1 after 24 h of exposure as monitored by alamar blue, neutral red and trypan blue assays (in presence or absence of foetal bovine serum, FBS). Futhermore, cryo-transmission electron microscopy analysis demonstrated that TiO2 particles is attached on nanotube surface after FBS-protein corona formation in cell culture medium. Raman spectroscopy imaging showed that TiO2-MWCNT can be internalised by RTG-2 cells. This work is a novel contribution towards better understanding the nanobiointeractions of nanohydrids linked to their in vitro effects on fish cells in aquatic nanoecotoxicology.


Assuntos
Nanopartículas , Nanotubos de Carbono , Coroa de Proteína , Poluentes Químicos da Água , Animais , Coroa de Proteína/química , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Poluentes Químicos da Água/toxicidade , Linhagem Celular , Nanopartículas/toxicidade , Peixes , Titânio/toxicidade , Titânio/química
2.
ACS Nano ; 16(9): 14239-14253, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35969505

RESUMO

Limitations of the recognition elements in terms of synthesis, cost, availability, and stability have impaired the translation of biosensors into practical use. Inspired by nature to mimic the molecular recognition of the anti-SARS-CoV-2 S protein antibody (AbS) by the S protein binding site, we synthesized the peptide sequence of Asn-Asn-Ala-Thr-Asn-COOH (abbreviated as PEP2003) to create COVID-19 screening label-free (LF) biosensors based on a carbon electrode, gold nanoparticles (AuNPs), and electrochemical impedance spectroscopy. The PEP2003 is easily obtained by chemical synthesis, and it can be adsorbed on electrodes while maintaining its ability for AbS recognition, further leading to a sensitivity 3.4-fold higher than the full-length S protein, which is in agreement with the increase in the target-to-receptor size ratio. Peptide-loaded LF devices based on noncovalent immobilization were developed by affording fast and simple analyses, along with a modular functionalization. From studies by molecular docking, the peptide-AbS binding was found to be driven by hydrogen bonds and hydrophobic interactions. Moreover, the peptide is not amenable to denaturation, thus addressing the trade-off between scalability, cost, and robustness. The biosensor preserves 95.1% of the initial signal for 20 days when stored dry at 4 °C. With the aid of two simple equations fitted by machine learning (ML), the method was able to make the COVID-19 screening of 39 biological samples into healthy and infected groups with 100.0% accuracy. By taking advantage of peptide-related merits combined with advances in surface chemistry and ML-aided accuracy, this platform is promising to bring COVID-19 biosensors into mainstream use toward straightforward, fast, and accurate analyses at the point of care, with social and economic impacts being achieved.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Teste para COVID-19 , Carbono/química , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Humanos , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Peptídeos/química
3.
F1000Res ; 10: 1196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853679

RESUMO

Nanotoxicology is a relatively new field of research concerning the study and application of nanomaterials to evaluate the potential for harmful effects in parallel with the development of applications. Nanotoxicology as a field spans materials synthesis and characterisation, assessment of fate and behaviour, exposure science, toxicology / ecotoxicology, molecular biology and toxicogenomics, epidemiology, safe and sustainable by design approaches, and chemoinformatics and nanoinformatics, thus requiring scientists to work collaboratively, often outside their core expertise area. This interdisciplinarity can lead to challenges in terms of interpretation and reporting, and calls for a platform for sharing of best-practice in nanotoxicology research. The F1000Research Nanotoxicology collection, introduced via this editorial, will provide a place to share accumulated best practice, via original research reports including no-effects studies, protocols and methods papers, software reports and living systematic reviews, which can be updated as new knowledge emerges or as the domain of applicability of the method, model or software is expanded. This editorial introduces the Nanotoxicology Collection in F1000Research. The aim of the collection is to provide an open access platform for nanotoxicology researchers, to support an improved culture of data sharing and documentation of evolving protocols, biological and computational models, software tools and datasets, that can be applied and built upon to develop predictive models and move towards in silico nanotoxicology and nanoinformatics. Submissions will be assessed for fit to the collection and subjected to the F1000Research open peer review process.


Assuntos
Nanoestruturas , Nanoestruturas/toxicidade , Projetos de Pesquisa , Software
4.
Ecotoxicol Environ Saf ; 202: 110892, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32593098

RESUMO

Carbon nanotubes presence in the environment increases every year because of exponential industrial production around the world. In aquatic environments, carbon nanotubes can interact with other pollutants based on their adsorbent surface chemistry properties. Heavy metal ions represent one of the biggest concerns in water resources nowadays due to anthropogenic activities, in which cadmium (Cd) is one of the most harmful metal for aquatic organisms. This study investigated the influence of two co-exposure protocols differing by the order of interaction of oxidized multiwalled carbon nanotubes (ox-MWCNT) with Cd in zebrafish liver cell line (ZFL). The ox-MWCNT was characterized, Cd content in culture medium and uptake by cells were quantified using ICP-MS and, the reactive oxygen species (ROS), the biotransformation enzymes activity of phase I and II as well as the antioxidants defenses and oxidative damage were analyzed. The effects on the cell cycle were investigated by flow cytometry and DNA damage by comet assay. The exposure to ox-MWCNT alone decreased the activity of catalase, glutathione peroxidase, and glutathione S-transferase and altered the cell cycle with a reduction of cells in the G2/M phase. Cd exposure alone decreased the activity of catalase and glutathione S-transferase, increased ROS, metallothionein, and lipid peroxidation content and causes genotoxicity in the cells. Despite different incubation protocol, the co-exposure ox-MWCNT-Cd increased the Cd content in ZFL cells after 24 h exposure, increased ROS production and DNA damage without differences between them. Our results showed the modulation of ox-MWCNT on Cd effects and contributed to future co-exposure toxicity investigations and nanosafety regulations involving carbon nanomaterials and aquatic pollutants.


Assuntos
Cádmio/toxicidade , Nanotubos de Carbono/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Ciclo Celular , Linhagem Celular , Ensaio Cometa , Dano ao DNA , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Metais Pesados/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade , Peixe-Zebra/metabolismo
5.
ACS Appl Bio Mater ; 3(9): 5984-5994, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021827

RESUMO

As an alternative to eliminating cancer cells with minimal impacts on the nearby tissues, biocompatible nanoparticles based on silica-coated carbon nano-onions, with outstanding photothermal efficiency, are presented. Metal-doped carbon nano-onion@SiO2 materials are produced using flame synthesis. Metal complexes are injected in the flame to tune the carbon organization levels, which results in materials with excellent photostability and total photothermal conversion efficiency, regarding the incident light input, as higher as 48% for 785 nm laser. It was found that the metal dopant, even at a very low content, plays an interesting role in photothermal efficiency. We tested the effect of thin silica layers on the carbon nanosphere, first as a way to improve biocompatibility and provide a more reactive surface toward the modifications process to add vectorizing agents. Despite the primary goal of the silica shell, a notable increase in photothermal efficiency was observed. In vivo studies of the biological response to the materials as probed by the zebrafish model found that the as-prepared carbon nanospheres and the SiO2-coated particles are highly biocompatible. The SiO2-coated samples were found to be more suitable for photothermal application, due to the higher colloidal stability and higher photothermal efficiency.

6.
Mater Sci Eng C Mater Biol Appl ; 105: 110080, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546390

RESUMO

To counter the undesired colloidal destabilization of nanoparticles in biologically-compatible media of high ionic strength (i.e. NaCl, phosphate buffer), polymers can be added to nanoparticle suspensions that will be used in biomedical applications. In these suspensions, polymers can promote high colloidal stability by manifestation of steric and/or depletion forces. However, little is known about the influence of these polymers on the interactions between nanoparticles and the biological components of the organism, such as proteins and cells. In this work, it was shown that the addition of the polymers (i) Pluronic-F127 (PF127), (ii) polyethylene glycol (PEG) of different molecular weights - 1.5, 12 and 35 kDa - and (iii) the protein bovine serum albumin (BSA) on colloidal silica nanoparticles (CSNPs; 135 nm) dispersed in phosphate-buffered saline (PBS) largely alter their colloidal stability through different mechanisms. Although all polymers were adsorbed on the CSNP surface, BSA maintained the CSNP dispersion in the medium by electrosteric stabilization mechanisms, while PEG and PF127 led to the occurrence of depletion forces between the particles. In addition, it was found that the interactions between polymers and CSNPs did not prevent proteins to access the nanoparticles' surface and have minimal effect on the formation of the protein corona when they were incubated in human blood plasma. On the other hand, BSA had a greater effect on the CSNP protein corona profile compared to other polymers (PEG and PF127). Together, these results confirm that biocompatible polymers PEG and PF127 can be used as colloidal stabilizing agents for nanoparticles since they preserve the accessibility of biomolecules to the nanoparticle surface, and they have little effect on the protein corona composition.


Assuntos
Nanopartículas/química , Coroa de Proteína/química , Soroalbumina Bovina/química , Animais , Bovinos , Coloides , Humanos , Poloxâmero/química , Polietilenoglicóis/química , Dióxido de Silício/química
7.
ACS Sens ; 3(3): 716-726, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29424231

RESUMO

Advances in nanomaterials have led to tremendous progress in different areas with the development of high performance and multifunctional platforms. However, a relevant gap remains in providing the mass-production of these nanomaterials with reproducible surfaces. Accordingly, the monitoring of such materials across their entire life cycle becomes mandatory to both industry and academy. In this paper, we use a microfluidic electronic tongue (e-tongue) as a user-friendly and cost-effective method to classify nanomaterials according to their surface chemistry. The chip relies on a new single response e-tongue with association of capacitors in parallel, which consisted of stainless steel microwires coated with SiO2, NiO2, Al2O3, and Fe2O3 thin films. Utilizing impedance spectroscopy and a multidimensional projection technique, the chip was sufficiently sensitive to distinguish silica nanoparticles and multiwalled carbon nanotubes dispersed in water in spite of the very small surface modifications induced by distinct functionalization and oxidation extents, respectively. Flow analyses were made acquiring the analytical readouts in a label-free mode. The device also allowed for multiplex monitoring in an unprecedented way to speed up the tests. Our goal is not to replace the traditional techniques of surface analysis, but rather propose the use of libraries from e-tongue data as benchmark for routine screening of modified nanomaterials in industry and academy.


Assuntos
Nariz Eletrônico , Técnicas Analíticas Microfluídicas , Nanoestruturas/química , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula , Propriedades de Superfície
8.
Mater Sci Eng C Mater Biol Appl ; 78: 141-150, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575968

RESUMO

Functional mesoporous materials have been worldwide studied for different applications. Mesoporous silicas are highlighted due to the synthetic possibilities for the preparation of such materials with different particle sizes and morphologies, and controlled pores sizes and structures. Moreover, the silica superficial silanol groups are explored in several chemical modifications, leading to functional materials with tuned functionalities and properties. In this work, an organo-functionalization and pyrolysis synthetic procedure is used to obtain graphitic carbon modified mesoporous SBA-15 silica. The carbon content was tuned during the functionalization step, and the graphitic nanodomains were formed in the pores surface and particles outer surface. Textural and small angle X-ray diffraction analysis accessed the presence of the carbon nanostructures inside the SBA-15 mesopores. Advanced microanalysis using electron energy loss spectroscopy coupled to a transmission electron microscope had confirmed the carbon distribution along the silica pores, which gives higher hydrophobicity and changed the interaction of the mesoporous material with biological systems. Finally, the influence of the surface modification with graphitic carbon species over the interaction with human red blood cells (hemolysis) and human blood plasma (protein corona formation) was elucidated for the very first time for this kind of functional materials. It was observed that the graphitic carbon species considerably reduced the hemolytic effect of the silica particles, and was responsible for modulating the loading and composition of the hard corona plasma proteins. This work deepness the fundamental knowledge on the interaction between such nanomaterials and biological systems, one step further the use of these modified silicas in biomedical applications.


Assuntos
Eritrócitos , Proteínas Sanguíneas , Carbono , Grafite , Humanos , Porosidade , Dióxido de Silício , Propriedades de Superfície
9.
Acta Trop ; 170: 16-42, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28232069

RESUMO

The study of neglected diseases has not received much attention, especially from public and private institutions over the last years, in terms of strong support for developing treatment for these diseases. Support in the form of substantial amounts of private and public investment is greatly needed in this area. Due to the lack of novel drugs for these diseases, nanobiotechnology has appeared as an important new breakthrough for the treatment of neglected diseases. Recently, very few reviews focusing on filiarasis, leishmaniasis, leprosy, malaria, onchocerciasis, schistosomiasis, trypanosomiasis, and tuberculosis, and dengue virus have been published. New developments in nanocarriers have made promising advances in the treatment of several kinds of diseases with less toxicity, high efficacy and improved bioavailability of drugs with extended release and fewer applications. This review deals with the current status of nanobiotechnology in the treatment of neglected diseases and highlights how it provides key tools for exploring new perspectives in the treatment of a wide range of diseases.


Assuntos
Portadores de Fármacos/uso terapêutico , Nanopartículas/uso terapêutico , Doenças Negligenciadas/tratamento farmacológico , Medicina Tropical , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/farmacocinética , Humanos , Leishmaniose/tratamento farmacológico , Hanseníase/tratamento farmacológico , Lipossomos/farmacocinética , Lipossomos/uso terapêutico , Malária/tratamento farmacológico , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Oncocercose/tratamento farmacológico , Esquistossomose/tratamento farmacológico , Tripanossomíase/tratamento farmacológico , Tuberculose/tratamento farmacológico
10.
Microsc Microanal ; 22(6): 1162-1169, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27998365

RESUMO

The effect of heavy metal in fish has been the focus of extensive research for many years. However, the combined effect of heavy metals and nanomaterials is still a new subject that needs to be studied. The aim of this study was to examine histopathologic alterations in the gills of Nile tilapia (Oreochromis niloticus) to determine possible effects of lead (Pb), carbon nanotubes, and Pb+carbon nanotubes on their histological integrity, and if this biological system can be used as a tool for evaluating water quality in monitoring programs. For this, tilapia were exposed to Pb, carbon nanotubes and Pb+carbon nanotubes for 4 days. The main alterations observed were epithelial structure, hyperplasia and displacement of epithelial cells, and alterations of the structure and occurrence of aneurysms in the secondary lamella. The most severe alterations were related to the Pb+carbon nanotubes. We conclude that the oxidized multi-walled carbon nanotubes enhanced the acute lead toxicity in Nile tilapias. This work draws attention to the implications of carbon nanomaterials released in the aquatic environment and their interaction with classical pollutants.


Assuntos
Ciclídeos , Brânquias/efeitos dos fármacos , Chumbo/toxicidade , Nanotubos de Carbono/toxicidade , Animais , Exposição Ambiental , Poluentes Químicos da Água/toxicidade
11.
Microb Pathog ; 93: 120-5, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821356

RESUMO

The Pseudomonas aeruginosa is a gram-negative bacillus and frequent cause of infection. This microorganism is resistant intrinsically to various drugs. The P. aeruginosa is associated with the biofilm formation, which causes worsen the prognosis and difficulty the treatment. The influence of Melaleuca alternifolia oil or "tree of tee" oil (TTO) and TTO nanoparticles on adhesion of P. aeruginosa in buccal epithelial cells was investigated. Also was determined the antimicrobial and antibiofilm activity against this microorganism. The TTO nanoparticles were produced by deposition of preformed polymer and the physic-chemical properties of nanoparticles were measured by electrophoresis and dynamic light scattering. The characterization of nanoparticle showed acceptable values for diameter and zeta potential. The evaluation of antimicrobial and antibiofilm activity against P. aeruginosa PAO1 was performed by microdilution indicating the minimal inhibitory concentration, and the potential antibiofilm. It was verified the action on virulence factors such the motility, besides the influence on adhesion in buccal epithelial cells. Both oil and nanoparticles showed a decrease in adhesion of microorganisms to buccal cells, decrease of biofilm and interfering on P. aeruginosa PAO1 motility. The nanostructuration of TTO, shows be a viable alternative against formed biofilm microorganisms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Melaleuca/química , Nanopartículas/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Óleo de Melaleuca/farmacologia , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Mucosa Bucal/microbiologia , Nanopartículas/química , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Óleo de Melaleuca/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
J Agric Food Chem ; 52(25): 7548-54, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15675802

RESUMO

This study starts by isolating and characterizing the first protein from Labramia bojeri seeds, which belong to the Sapotaceae family. The purified lectin analyzed by SDS-PAGE with and without beta-mercaptoethanol shows two protein bands (M(r) = 19 and 20 kDa), which cannot be resolved. Protein bands have shown similar characteristics as molecular masses, determined by gel filtration and native gel; N-terminal sequences presented a difference in their isoelectric points. We have suggested that those protein bands might be variants of the protein named Labramin. The sequence database search has shown that the N-terminal sequence of Labramin presented a high degree of homology to Kunitz-type trypsin inhibitor (82-52%) despite no trypsin inhibition activity detection. The lectin-like form from Labramin was better inhibited by glycoproteins and has also presented growth inhibition of the fungus Colletotrichum lindemuthianum and the yeast Saccharomyces cerevisiae, but it has not presented an apparent effect on Fusarium oxysporum.


Assuntos
Peptídeos/isolamento & purificação , Lectinas de Plantas/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Sapotaceae/química , Sementes/química , Animais , Eletroforese em Gel de Poliacrilamida , Fungicidas Industriais/farmacologia , Hemaglutinação , Humanos , Concentração de Íons de Hidrogênio , Peptídeos/química , Lectinas de Plantas/química , Proteínas de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...